合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 槐糖脂的屬性:脂肪酸底物和混合比例的影響——材料和方法
> 泡沫形成的原理是什么?陰離子表面活性劑為何可以作為起泡劑?
> 馬來酰蓖麻油酸聚乙二醇酯的表面張力、等物化性能測定(二)
> 氧化石蠟油水界面張力測試方法及低張力性能
> 振蕩頻率、濃度、油相、界面張力對陰離子表面活性劑HABS和PS界面模量的影響(三)
> 多頻超聲波技術(shù)&人工神經(jīng)網(wǎng)絡(luò)構(gòu)建變壓器油界面張力預測模型(二)
> ?警惕表面張力誤差!實驗室濕度控制對超微量天平的3大影響
> 基于表面張力測試研究Gemini季銨鹽在氟磷灰石與石英界面的吸附行為
> 3種不同類型噴霧助劑對氟啶蟲胺腈藥液表面張力及在蘋果葉片潤濕持留性能測定(二)
> 表面張力與涂料質(zhì)量關(guān)系
推薦新聞Info
-
> 高鹽低滲油藏中超低界面張力表面活性劑多段塞調(diào)驅(qū)機理與應用效果(三)
> 高鹽低滲油藏中超低界面張力表面活性劑多段塞調(diào)驅(qū)機理與應用效果(二)
> 高鹽低滲油藏中超低界面張力表面活性劑多段塞調(diào)驅(qū)機理與應用效果(一)
> 鈉鉀離子濃度對礦井水和純水表面張力、噴霧霧化特性的影響(三)
> 鈉鉀離子濃度對礦井水和純水表面張力、噴霧霧化特性的影響(二)
> 鈉鉀離子濃度對礦井水和純水表面張力、噴霧霧化特性的影響(一)
> Layzer模型與Zufiria模型研究界面張力對Rayleigh-Taylor氣泡不穩(wěn)定性的影響
> 深過冷Ni-15%Sn合金熔體表面張力的實驗研究與應用前景
> ?表面張力在微孔曝氣法制備微氣泡中的核心作用——基于實驗研究的深度解析
> 十二胺功能化石墨烯量子點的制備、表面張力及對L-薄荷醇的緩釋作用(三)
不同水油黏度比條件下乳化對3種稠油復合體系的影響(二)
來源:油氣地質(zhì)與采收率 瀏覽 1034 次 發(fā)布時間:2025-02-27
2、實驗結(jié)果與討論
2.1界面張力
在比較3種復合體系驅(qū)油特征之前,應確定其能否滿足超低界面張力和良好乳化性能的基本設(shè)計要求。因此,首先針對選用的復合體系,測試其與稠油的界面張力(圖1)。1#超低界面張力復合體系和3#雙效復合體系與稠油的界面張力均能達到超低水平,為3.0×10-3mN/m;而2#乳化復合體系與稠油的界面張力為5.1×10-1mN/m。3種復合體系與稠油的界面張力表現(xiàn)出顯著的不同,符合進一步驅(qū)油對比的需要。此外,盡管超低界面張力有利于減小毛細管力和稠油在巖石壁面的黏附功,但是對于稠油復合驅(qū),乳化降黏機理極為關(guān)鍵,需進一步對3種復合體系的乳化性能加以研究。
圖1 3種復合體系與稠油的界面張力
2.2稠油乳化特征
結(jié)合圖2和圖3可見,初始油水充分振蕩混合后,3種復合體系均能較好地乳化和分散稠油,形成大量的乳化油滴。隨著時間的延長,乳狀液逐漸聚并,不同復合體系形成乳狀液穩(wěn)定性差異明顯:①析水率特征(圖2)。1#超低界面張力復合體系60min時最先開始析水,析水率上升更快,560min后析水率穩(wěn)定在96.4%;2#乳化復合體系析水最晚,130min時開始析水,析水率上升最慢,560min后析水率穩(wěn)定在52.2%;3#雙效復合體系在80min時開始析水,析水率上升速度介于前兩者之間,560min后析水率為93.3%。②乳狀液微觀形態(tài)(圖3)。乳狀液制備后,高溫70°C時維護90min,1#超低界面張力復合體系形成的乳化油滴顯著聚并成大油滴,甚至是連片分布,這也是其更容易析水的原因。2#乳化復合體系僅有少量的大油滴出現(xiàn),大部分油滴保持初始的分散狀態(tài),能夠更好地穩(wěn)定。3#雙效復合體系中油滴也發(fā)生了明顯的聚并,但是油滴尺寸較1#超低界面張力復合體系中的小,且油滴與油滴間即使相互接觸、堆積,也仍有明顯的界面膜存在,未聚并。綜上所述,3種復合體系穩(wěn)定稠油乳狀液的能力由弱到強依次為:1#超低界面張力復合體系、3#雙效復合體系、2#乳化復合體系。體系性能符合研究設(shè)計要求,具備進一步驅(qū)油對比的基礎(chǔ)。
圖2不同時間下3種復合體系所形成的稠油乳狀液析水率
圖3不同時間下3種復合體系所形成的稠油乳狀液微觀形態(tài)
此外,1#超低界面張力復合體系和3#雙效復合體系形成稠油乳狀液的穩(wěn)定性較2#乳化復合體系差,這也說明乳狀液的穩(wěn)定性與超低界面張力無正相關(guān)性,可能更多地取決于油水界面膜的強度。超低界面張力甚至不利于乳狀液的穩(wěn)定,因為:①油水界面能低,界面極易擴展,油水界面上局部表面活性劑濃度瞬時降低,水化膜厚度變薄,不利于乳狀液的穩(wěn)定。②油水界面的擴展,增大了油滴碰撞的幾率。③能形成超低界面張力的表面活性劑具有更好的親水親油平衡,更傾向于在水平的油水界面鋪展,而不是像乳狀液一樣的彎曲界面。
2.3不同性能體系復合驅(qū)對比
通過界面張力、乳化性能研究發(fā)現(xiàn),3種復合體系性能存在顯著差異:1#超低界面張力復合體系可將油水界面張力減小至超低水平,但穩(wěn)定稠油乳狀液的能力較差;2#乳化復合體系難以將油水界面張力降低至超低,但能夠更好地穩(wěn)定稠油乳狀液;3#雙效復合體系油水界面張力能夠達到超低,對稠油的乳化性能介于前兩者之間。為了進一步確定性能差異(尤其是乳化)對復合體系驅(qū)替稠油的影響,首先在水油黏度比為0.045和0.460的條件下開展驅(qū)油研究(圖4)。
圖4不同水油黏度比下3種復合體系的驅(qū)油采收率
在水驅(qū)采收率基本不變,含水率達到98%時,分別轉(zhuǎn)注0.3PV不同性能的復合體系進一步提高采收率。當水油黏度比為0.045時,3種復合體系驅(qū)替稠油的采收率增幅分別為21.2%,24.5%和27.9%。2#乳化復合體系驅(qū)油能力較1#超低界面張力復合體系略微增強,但3#雙效復合體系具有最強的驅(qū)油能力,是最佳驅(qū)油體系。進一步增大水油黏度比至0.460,3種復合體系驅(qū)替稠油的采收率增幅分別為33.6%,33.8%和34.5%,3種復合體系驅(qū)油效果相近,傳統(tǒng)1#超低界面張力復合體系即能滿足驅(qū)油要求,無需選用2#乳化復合體系或者3#雙效復合體系。對比2個水油黏度比下的驅(qū)油結(jié)果認為,水油黏度比為0.045時,復合體系流度控制能力不足,乳化性能的增強能夠輔助稠油降黏,并通過乳化油滴的賈敏效應擴大波及,致使乳化性能相對較好的2#乳化復合體系和3#雙效復合體系具有更好的驅(qū)油效果;而當水油黏度比增大至0.460時,復合體系流度控制能力較強,高效驅(qū)油對體系乳化性能的要求減弱。據(jù)此,可以推斷,當水油黏度比從0.045增大到0.460時,存在一個水油黏度比界限:小于該界限時,乳化能夠顯著增強復合體系的驅(qū)油效果;而大于該界限時乳化對驅(qū)油的影響顯著減小,甚至可以忽略,無需過分強調(diào)乳化,傳統(tǒng)超低界面張力復合體系即能滿足驅(qū)油要求。





