合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> ?氧化石墨烯基復(fù)合膜材料的制備方法、應(yīng)用開發(fā)及前景
> 水浸提提取肥皂莢皂苷水溶液最低表面張力及影響因素分析——摘要、材料與方法
> 燒結(jié)礦致密化行為研究:不同堿度條件下熔體的表面張力、表觀黏度值(三)
> 利用LB膜分析儀技術(shù)制備納米環(huán)組裝陣列,得到一種具有結(jié)構(gòu)色的材料
> 基于孔溶液表面張力和黏度測試揭示增稠劑對流變參數(shù)和氣泡結(jié)構(gòu)的影響機(jī)制(一)
> 多功能膜材研發(fā):界面張力已成為整套工藝鏈協(xié)同下動態(tài)演化的核心控制點(diǎn)
> 納米熔鹽形成機(jī)理、表面張力測定及影響因素研究(一)
> 氣凝膠的合成方法及干燥方法一覽
> 表面張力估算法測定29種常見低芳淺色礦物油的溶解度參數(shù)——實(shí)驗(yàn)部分
> 生物表面活性劑產(chǎn)生菌的篩選及對PAHs污染環(huán)境的修復(fù)效果研究(三)
推薦新聞Info
-
> 高鹽低滲油藏中超低界面張力表面活性劑多段塞調(diào)驅(qū)機(jī)理與應(yīng)用效果(三)
> 高鹽低滲油藏中超低界面張力表面活性劑多段塞調(diào)驅(qū)機(jī)理與應(yīng)用效果(二)
> 高鹽低滲油藏中超低界面張力表面活性劑多段塞調(diào)驅(qū)機(jī)理與應(yīng)用效果(一)
> 鈉鉀離子濃度對礦井水和純水表面張力、噴霧霧化特性的影響(三)
> 鈉鉀離子濃度對礦井水和純水表面張力、噴霧霧化特性的影響(二)
> 鈉鉀離子濃度對礦井水和純水表面張力、噴霧霧化特性的影響(一)
> Layzer模型與Zufiria模型研究界面張力對Rayleigh-Taylor氣泡不穩(wěn)定性的影響
> 深過冷Ni-15%Sn合金熔體表面張力的實(shí)驗(yàn)研究與應(yīng)用前景
> ?表面張力在微孔曝氣法制備微氣泡中的核心作用——基于實(shí)驗(yàn)研究的深度解析
> 十二胺功能化石墨烯量子點(diǎn)的制備、表面張力及對L-薄荷醇的緩釋作用(三)
考慮界面張力、液滴尺寸和液滴變形影響的攜液臨界模型構(gòu)建(二)
來源:石油鉆采工藝 瀏覽 1409 次 發(fā)布時間:2024-12-17
3變形液滴曳力系數(shù)模型
假設(shè)液滴體積不變,只在外力作用下液滴表面積發(fā)生變化,且液滴不與其他液滴合并,液滴本身也不發(fā)生分裂。則液滴會在壓差作用下由球形變成橢球形。
如圖4所示,ds為球形液滴的直徑,m;d為液滴變形后迎風(fēng)面直徑,m;h為橢球體短軸高度,m。液滴等效直徑比φ為球形液滴直徑與變形后迎風(fēng)面直徑比,即φ=ds/d。當(dāng)液滴為橢球形時,其表面積近似為
液滴變形前后體積不變,即ds3=d2h,則液滴變形程度系數(shù)為
圖4液滴變形
式中,φ為液滴變形程度系數(shù),為與變形液滴體積相等的等效球形表面積與實(shí)際液滴表面積的比值。當(dāng)氣液相對速度不大時,液滴保持球形,可以利用球形液滴曳力系數(shù)計算攜液臨界流量,但是當(dāng)液滴發(fā)生變形以后,曳力系數(shù)和液滴迎風(fēng)面積相應(yīng)的發(fā)生改變,用球形液滴曳力系數(shù)計算誤差可能高達(dá)30%,對于非球形剛性顆粒,可以應(yīng)用如下曳力系數(shù)表達(dá)式進(jìn)行計算:
式中,μg為氣體動力黏度,Pa·s。從式(8)可知,曳力系數(shù)與液滴大小有關(guān)。液滴為了保持液滴形狀不產(chǎn)生分裂,最大液滴韋伯?dāng)?shù)的范圍為20~30,可以表述為
式中,Nw為球形液滴韋伯?dāng)?shù);dmax為球形液滴最大直徑,m。
根據(jù)Turner模型可以得到球形液滴最大直徑為
4、考慮液滴尺寸和變形影響的攜液臨界模型
氣體攜液滿足的基礎(chǔ)力學(xué)條件為向上曳力等于液滴重力,即假設(shè)液滴在氣流中受到前后壓差作用,發(fā)生變形,變形前后體積不變,則液滴體積和投影面積為
式中,Vd為液滴為球形時的體積,m3。
考慮到攜帶液滴直徑d=dmax時,聯(lián)立式(14)、(16)、(17)、(18)得到攜液臨界流速為
式中,vcr為攜液臨界流速,m/s。模型中液滴等效直徑比反映了液滴的變形程度,而變形程度又與液滴尺寸有關(guān),Shi Juntai于2014年給出了液滴厚度(圖4中h)與長度(圖4中d)之間的關(guān)系
式中,α為液滴厚度與長度之比。
根據(jù)式(6)和式(20),可以得到最大液滴等效直徑比為
聯(lián)立界面張力公式(式4)、變形系數(shù)公式(式7)、曳力系數(shù)公式(式8)、韋伯?dāng)?shù)公式(式14),攜液臨界流速公式(式19)、等效直徑比公式(式21),若液滴尺寸未知,還需結(jié)合最大液滴公式(式15),假設(shè)攜液臨界流量和曳力系數(shù)初始值分別為Turner模型和0.44,通過方程組隱式迭代求解得到曳力系數(shù)和攜液臨界流量。最后得到氣井?dāng)y液臨界流量為
式中,qcr為攜液臨界流量,m3/d;Aw為井筒橫截面面積,m2;p為井筒壓力,MPa;Z為偏差因子;T為溫度,K。
5、參數(shù)敏感性分析
(1)界面張力對攜液臨界流量影響。如圖5所示為氣體相對密度為0.7,溫度為100℃時,利用新模型計算當(dāng)界面張力為常數(shù)(60 mN/m)和界面張力隨壓力變化時不同壓力下的攜液臨界流速。考慮界面張力變化的攜液臨界流速要比界面張力為常數(shù)時的小,計算精度更高。且隨著壓力的增大,攜液臨界流速的計算精度提高百分比,逐漸從4%上升至12.5%,平均提高了8%。
圖5考慮界面張力影響的攜液臨界流速曲線
(2)液滴尺寸和液滴變形。如圖6所示為壓力15 MPa,溫度50℃時不同液滴尺寸下液滴變形程度、曳力系數(shù)的變化趨勢。從中可知,當(dāng)液滴特別小時(1 mm),等效直徑比及變形程度系數(shù)接近1,曳力系數(shù)近似0.44,液滴呈球形基本不發(fā)生變形;隨著液滴尺寸從1 mm增大到10 mm時,等效直徑比從1減小到0.75,變形程度系數(shù)從1減小到0.45,曳力系數(shù)從0.44增大到4.3,液滴呈橢球形變形程度逐漸加大。
圖6液滴變形程度及曳力系數(shù)曲線
如圖7所示為不同液滴直徑下攜液臨界流速。從中可知,當(dāng)液滴特別小時(約為1 mm),液滴形變不明顯,所得到的模型與Turner模型相同;隨著液滴變大,液滴變形嚴(yán)重,曳力系數(shù)增大,攜液臨界流速變小。在一定液滴大小及形狀下,模型簡化為常用的攜液臨界流量模型,例如李閩模型對應(yīng)的液滴尺寸為8 mm,等效直徑比為0.8,液滴變形程度系數(shù)為0.65。
圖7考慮液滴變形的攜液臨界流速
6、模型驗(yàn)證
利用文獻(xiàn)中介紹的氣井積液實(shí)驗(yàn)數(shù)據(jù)驗(yàn)證新模型的準(zhǔn)確性,該實(shí)驗(yàn)通過數(shù)碼攝像機(jī)捕捉微觀液滴實(shí)際形狀,采用數(shù)字流量計對注入高壓氣體計量。液滴實(shí)驗(yàn)先采用小氣量實(shí)驗(yàn),然后加大注氣量,待注入液體使井底積液實(shí)現(xiàn)穩(wěn)定不再增長,這時的注氣量即為臨界產(chǎn)量,同時觀察并記錄壓力傳感器的數(shù)據(jù),該數(shù)據(jù)即為對應(yīng)井口壓力值。觀察數(shù)字溫度計數(shù)據(jù),得到該組實(shí)驗(yàn)對應(yīng)的井口溫度。實(shí)驗(yàn)發(fā)現(xiàn)在低壓條件下,液滴最小為1 mm,液滴合并最大為4~5 mm,運(yùn)動液滴近似為橢球體的形狀,高寬比約為0.9。且實(shí)際氣流中液滴會由于力矩的不平衡出現(xiàn)翻滾從而減小有效迎流面積。采用相同的條件,計算氣井?dāng)y液臨界流量與實(shí)驗(yàn)數(shù)據(jù)對比,如圖8所示。從圖中可知,在相同條件下計算攜液臨界流量,Turner公式系數(shù)為6.6,李閩公式系數(shù)為2.5。與實(shí)驗(yàn)數(shù)據(jù)相比,Turner公式計算的結(jié)果偏大,而李閩公式計算結(jié)果偏小。考慮液滴尺寸為4.5 mm、變形后高寬比為0.9時,新模型公式系數(shù)為4.75,與實(shí)驗(yàn)數(shù)據(jù)吻合最好。
圖8模型預(yù)測與實(shí)驗(yàn)數(shù)據(jù)對比
7、結(jié)論
(1)建立了考慮界面張力、液滴尺寸和液滴變形影響的攜液臨界模型。模型首先通過分段擬合界面張力實(shí)驗(yàn)數(shù)據(jù),建立界面張力公式,然后引入變形液滴曳力系數(shù)公式及液滴變形程度和液滴尺寸之間的關(guān)系式,得到更加符合實(shí)際的攜液臨界流量模型。
(2)界面張力隨壓力和溫度變化,壓力越大、溫度越高,氣水界面張力越小;氣體相對密度越大,氣水界面張力越小。當(dāng)壓力和溫度分別為0~40 MPa和20~200℃時,界面張力范圍為30~75 mN/m,考慮界面張力影響的攜液臨界流量比界面張力為常數(shù)時的計算精度要高。
(3)液滴尺寸和變形對攜液臨界流量影響較大。當(dāng)液滴特別小時,液滴在壓差下基本不發(fā)生形變,液滴基本呈球形,曳力系數(shù)近似0.44;隨著液滴直徑越大,液滴越容易變形,液滴高寬比越小,曳力系數(shù)越大,攜液臨界流速變小。考慮了液滴尺寸和液滴變形影響的新模型與實(shí)驗(yàn)數(shù)據(jù)吻合良好。





