合作客戶(hù)/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> Delta-8使用新方法測(cè)試CMC,而不是表面張力測(cè)試法——方法
> 油田用酸化增產(chǎn)增注劑成分配方比例變動(dòng)對(duì)油水的界面張力的影響
> 4種油醇烷氧基化物平衡和動(dòng)態(tài)表面張力、潤(rùn)濕性、泡沫性、乳化性質(zhì)研究(三)
> 可視化實(shí)驗(yàn)方法研究電場(chǎng)作用下液滴撞擊表面的動(dòng)態(tài)行為(一)
> 納米銅硅膠膜吸水性能分析實(shí)驗(yàn)方法與結(jié)果
> 便于調(diào)節(jié)的表面張力儀結(jié)構(gòu)組成及原理
> 磁場(chǎng)強(qiáng)度和磁化時(shí)長(zhǎng)對(duì)除草劑溶液表面張力、噴霧霧滴粒徑的影響(三)
> 橢球形的小水滴為什么會(huì)變成球形?
> 表面活性素制備、分離純化、溶液表面張力測(cè)定及膠束化行為研究(一)
> 不同助劑及濃度對(duì)IDK120-025型和LU120-015型噴頭霧化效果的影響(四)
推薦新聞Info
-
> 高鹽低滲油藏中超低界面張力表面活性劑多段塞調(diào)驅(qū)機(jī)理與應(yīng)用效果(三)
> 高鹽低滲油藏中超低界面張力表面活性劑多段塞調(diào)驅(qū)機(jī)理與應(yīng)用效果(二)
> 高鹽低滲油藏中超低界面張力表面活性劑多段塞調(diào)驅(qū)機(jī)理與應(yīng)用效果(一)
> 鈉鉀離子濃度對(duì)礦井水和純水表面張力、噴霧霧化特性的影響(三)
> 鈉鉀離子濃度對(duì)礦井水和純水表面張力、噴霧霧化特性的影響(二)
> 鈉鉀離子濃度對(duì)礦井水和純水表面張力、噴霧霧化特性的影響(一)
> Layzer模型與Zufiria模型研究界面張力對(duì)Rayleigh-Taylor氣泡不穩(wěn)定性的影響
> 深過(guò)冷N(xiāo)i-15%Sn合金熔體表面張力的實(shí)驗(yàn)研究與應(yīng)用前景
> ?表面張力在微孔曝氣法制備微氣泡中的核心作用——基于實(shí)驗(yàn)研究的深度解析
> 十二胺功能化石墨烯量子點(diǎn)的制備、表面張力及對(duì)L-薄荷醇的緩釋作用(三)
乳化降黏驅(qū)油劑在孔隙尺度的致效機(jī)理
來(lái)源:油田化學(xué) 瀏覽 991 次 發(fā)布時(shí)間:2024-08-27
摘要:為了研究乳化降黏驅(qū)油劑對(duì)不同滲透率的水驅(qū)普通稠油油藏的驅(qū)油效率和孔隙尺度增效機(jī)理,選取了烷基酚聚氧乙烯醚(J1)、α-烯基磺酸鹽類(lèi)表面活性劑(J2)、十二烷基羥磺基甜菜堿(J3)、J3與烷基酚聚氧乙烯醚羧酸鹽復(fù)配表面活性劑(J4)作為驅(qū)油劑,開(kāi)展了4種驅(qū)油劑一維驅(qū)油和微觀(guān)驅(qū)油模擬實(shí)驗(yàn),明確了乳化降黏驅(qū)油劑在孔隙尺度的致效機(jī)理。
結(jié)果表明,降低界面張力對(duì)提高驅(qū)油效率的作用大于提高乳化降黏率。在油藏條件下,乳化降黏驅(qū)油劑需要依靠乳化降黏和降低界面張力的協(xié)同增效作用,才能大幅提高驅(qū)油效率。乳化降黏驅(qū)油劑的乳化能力越強(qiáng)、油水界面張力越低,驅(qū)油效率增幅越大。
當(dāng)化學(xué)劑乳化降黏率達(dá)到95%時(shí),油水界面張力從10-1mN/m每降低1個(gè)數(shù)量級(jí),化學(xué)劑在高滲透和低滲透巖心中的驅(qū)油效率依次提高約10.0%和7.8%。乳化降黏驅(qū)油劑注入初期通過(guò)降低界面張力,使得高滲透巖心和低滲透巖心中的驅(qū)替壓力分別為水驅(qū)注入壓力的1/2和1/3,從而提高注入能力。注入后期大塊的原油被乳化形成大量不同尺寸的油滴,增強(qiáng)原油流動(dòng)性,提高驅(qū)油效率。
乳化形成的界面相對(duì)穩(wěn)定的稠油油滴,能暫堵巖石的喉道和大塊稠油與巖石顆粒形成的通道。油滴的暫堵疊加效應(yīng),使高滲透和低滲透巖心的驅(qū)替壓差分別為水驅(qū)壓差的5.2倍和32.3倍,大幅提高了注入壓力,從而擴(kuò)大平面波及面積。降黏驅(qū)油劑驅(qū)油實(shí)現(xiàn)了提高驅(qū)油效率的同時(shí)擴(kuò)大波及范圍。
研究結(jié)果為水驅(qū)稠油開(kāi)發(fā)用驅(qū)油劑的研發(fā)提供參考,為大幅提高水驅(qū)普通稠油采收率奠定基礎(chǔ)。





